Are We Providing Effective Mechanical Ventilation in New US Homes?

Brett C. Singer
Lawrence Berkeley National Lab
bcsinger@lbl.gov

Presented at Indoor Air 2018, Philadelphia PA, 23-Jul-2018
What is effective mechanical ventilation?

What MV equipment is required by code?

Does installed MV meet code?

Is MV used routinely?
Why do we need ventilation?

Build tight, ventilate right!

• Reduce exposure to chemical pollutants from materials and products
• Manage bioeffluents, odors and moisture
• Remove contaminants generated with cooking
What is effective MV for a new home?

Use ASHRAE 62.2 as guide*

• General ventilation
 ~0.35/h or more

• Exhaust in every bath & toilet
 ≥50 cfm (85 m³/h) or
 ≥20 cfm continuous

• Extract hood over cooktop
 ≥100 cfm (170 m³/h)
 <3 sone

* ASHRAE 62.2 also allows kitchen exhaust fan; general ventilation requirements vary
What is required by code?

- Required in states that adopted IECC 2012 / 2015
- Not required in Texas, some local codes
- Kitchen exhaust required in a few states but not by IECC; use varies by region
- Bath exhaust installed in most new homes
MV required in high performance home programs

80,000 homes in 2016

816,000 new homes sold in US in 2016

These programs affect many fewer homes
Checks on MV systems vary by program!

80,000 homes in 2016

816,000 new homes sold in US in 2016

These programs affect many fewer homes
Does installed MV meet code requirements?

21 Florida homes
MV installed during prior 15 years
Some were pre-code requirement
20 met code requirement of ≤5 ach50
3 had airflows close to code-required
 2 of those turned off!
Only 12 “capable of operating” as found
(Sonnes et al., 2015)

29 Washington homes
Most built 2008-2012
All ≤3.5 ach50; 7 ≤1 ach50
As-found, 19 met general MV
Timer adjust -> all but 3 met airflow
Mean: 137% of airflow requirement
Many maintenance & install issues
(Eklund et al., 2014)
Since 2008, California building code has required MV similar to ASHRAE 62.2

2011 study of 15 new homes (Stratton et al.)

2016-18 study of 70 homes built since 2011
• Characterized equipment, measured flows, observed status
• Monitored IAQ, equipment use for week
• Survey about satisfaction, MV use, other

Paper 542, Chan et al., Wed @13:30
Does installed MV meet code requirements?

15 California new homes, 2011 data
 Only 2 met all code requirements
 2 had insufficient central MV, 13 OK
 2 had recirculating range hoods
 7 had insufficient airflow in bathrooms
 12 used exhaust fan in laundry room
(Stratton et al., 2012)
Central MV systems in 70 California homes

In most cases, the measured airflow of the exhaust fan exceeded the required whole-dwelling ventilation needs.

Mean required: 63 cfm
Mean provided: 96 cfm

~50% above code

• Continuous exhaust (N=55)
• Intermittent exhaust (N=9)
• Continuous inline fan connected to central forced air system (N=4)
• Supply ventilation provided by central fan integrated system with a motorized damper (N=2)
California bathrooms: Most above code, below rated

Chan et al., Data from 70 California homes

Master: Main

Other baths

Master Toilet/Shower

Rated vs. measured exhaust fan flows in fifteen new California homes

Stratton et al., 2012
Kitchens: Most range hoods meet minimum airflow requirement; but many microwaves don’t

Non-venting; Common in US

Venting

Number with flow > 100 cfm

Range Hood (N=32) OTR Microwave (N=38)

Low Speed Med to High Speed Failed T24
Is mechanical ventilation used routinely?

Are central systems operating?

(What do people know and think about it?)

Are kitchen and bath exhaust fans used?
In California, only **1 in 4** homes had the central ventilation system running as found.
Labels matter!

<table>
<thead>
<tr>
<th>Whole-House Ventilation Control</th>
<th>Controller Labelled?</th>
<th>% On As-Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off Switch</td>
<td>No (N=42)</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Yes (N=12)</td>
<td>58%</td>
</tr>
<tr>
<td>Programmable Controller</td>
<td>No (N=10)</td>
<td>50%</td>
</tr>
<tr>
<td>Thermostat</td>
<td>No (N=2)</td>
<td>0%</td>
</tr>
<tr>
<td>Breaker Panel</td>
<td>No (N=1)</td>
<td>100%</td>
</tr>
<tr>
<td>No Controller</td>
<td>No (N=3)</td>
<td>100%</td>
</tr>
</tbody>
</table>
“Continuous Duty”

“Whole House Ventilation Control. Leave on except for severe outdoor air quality.”

“Keep fan “ON” at all times except in case of outdoor air contamination or if home is vacant for more than 7 days.”

“To maintain minimum levels of outside air ventilation required by the State of California, this fan should be on at all times when the building is occupied, unless there is outdoor air contamination.”
Half of the CA households reported using range hood sometimes or less frequently.

Reasons for Not Using Range Hood

<table>
<thead>
<tr>
<th>Reason</th>
<th>Number of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open window instead</td>
<td>10</td>
</tr>
<tr>
<td>Ineffective</td>
<td>10</td>
</tr>
<tr>
<td>Too noisy</td>
<td>20</td>
</tr>
<tr>
<td>Forgot</td>
<td>30</td>
</tr>
<tr>
<td>Not needed</td>
<td>40</td>
</tr>
</tbody>
</table>
Conclusions

• In states with long-running ventilation requirements, most homes have acceptable equipment installed
• General ventilation systems often turned off even in these states
• Clear labels on switches appears to increase use
• Most homes have adequate bath exhaust fans
• Over the range microwaves common; often not-vented
• Many microwave exhaust fans don’t meet code for airflow
• Range hoods meet flow but may be too loud
• Few microwaves meet sound requirement
Resources

EXTRA SLIDES
Differences in perception - hood vs. microwave, vented vs. non-vented

Online survey of CA homes built since 2002

Survey Responses (%)

- Always
- Rarely
- Sometimes
- Occasionally
- Never
- Don’t Know

Kitchen range hood: Exhausts air to Outside, Blows air back into Kitchen
Over-the-range microwave: Exhausts air to Outside, Blows air back into Kitchen
Don’t know: Exhausts air to Outside, Blows air back into Kitchen
Perception of vented vs. non-vented

Online survey of CA homes built since 2002
Florida non-operational homes

Finally nine (43%) of the 21 study homes were determined to not be operational. Not operational designations were given for the following reasons:

- Houses 1 and 11: unable to test due to controller failure
- House 4: one of two ventilation systems inoperable due to failure of damper to open
- House 8: a runtime ventilation system with control was shown on the energy rating, but no ventilation system was present at house (only standard bath fans controlled by simple on/off switch)
- Houses 12 and 20: ERV removed (house 12) or ERV ducts disconnected (house 20) by homeowner
- House 13: both ERV units had 120v service and breakers were on, but were not functional; the filters and cores were so clean they may have never operated (the owners were unaware of these units and indicated that they had not changed filters)
- Houses 15: inoperable as intended; ventilation only occurs when air handler is on (damper controllable, but not air handler)
- Houses 16: inoperable as intended; ventilation only occurs when air handler is on, apparently due to incorrect wiring (damper fixed 100% open).
Most homebuilding in South

New Homes Sold

Residential Buildings

(Singer - 7/23/2018)
HVAC particle filters in recently built CA homes

- Exhaust ventilation in homes with reasonably tight building envelope
- Medium to high efficiency air filters

<table>
<thead>
<tr>
<th>MERV Rating</th>
<th>Number of Air Filters (N=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>