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Abstract

Modeling, Analysis, and Control of Demand Response Resources
by
Johanna L. Mathieu
Doctor of Philosophy in Engineering — Mechanical Engineering
University of California, Berkeley

Assistant Professor Duncan S. Callaway, Co-Chair
Professor Ashok J. Gadgil, Co-Chair

While the traditional goal of an electric power system has been to control supply to fulfill
demand, the demand-side can plan an active role in power systems via Demand Response
(DR), defined by the Department of Energy (DOE) as “a tariff or program established to
motivate changes in electric use by end-use customers in response to changes in the price of
electricity over time, or to give incentive payments designed to induce lower electricity use
at times of high market prices or when grid reliability is jeopardized” [29]. DR can provide a
variety of benefits including reducing peak electric loads when the power system is stressed
and fast timescale energy balancing. Therefore, DR can improve grid reliability and reduce
wholesale energy prices and their volatility.

This dissertation focuses on analyzing both recent and emerging DR paradigms. Recent
DR programs have focused on peak load reduction in commercial buildings and industrial
facilities (C&I facilities). We present methods for using 15-minute-interval electric load data,
commonly available from C&I facilities, to help building managers understand building en-
ergy consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally,
we present a regression-based model of whole building electric load, i.e., a baseline model,
which allows us to quantify DR performance. We use this baseline model to understand the
performance of 38 C&I facilities participating in an automated dynamic pricing DR program
in California. In this program, facilities are expected to exhibit the same response each DR
event. We find that baseline model error makes it difficult to precisely quantify changes in
electricity consumption and understand if C&I facilities exhibit event-to-event variability in
their response to DR signals. Therefore, we present a method to compute baseline model
error and a metric to determine how much observed DR variability results from baseline
model error rather than real variability in response. We find that, in general, baseline model
error is large. Though some facilities exhibit real DR variability, most observed variability
results from baseline model error. In some cases, however, aggregations of C&I facilities
exhibit real DR variability, which could create challenges for power system operation. These
results have implications for DR program design and deployment.



Emerging DR paradigms focus on faster timescale DR. Here, we investigate methods to
coordinate aggregations of residential thermostatically controlled loads (TCLs), including air
conditioners and refrigerators, to manage frequency and energy imbalances in power systems.
We focus on opportunities to centrally control loads with high accuracy but low requirements
for sensing and communications infrastructure. Specifically, we compare cases when mea-
sured load state information (e.g., power consumption and temperature) is 1) available in
real time; 2) available, but not in real time; and 3) not available. We develop Markov Chain
models to describe the temperature state evolution of heterogeneous populations of TCLs,
and use Kalman filtering for both state and joint parameter/state estimation. We present
a look-ahead proportional controller to broadcast control signals to all TCLs, which always
remain in their temperature dead-band. Simulations indicate that it is possible to achieve
power tracking RMS errors in the range of 0.26-9.3% of steady state aggregated power con-
sumption. Results depend upon the information available for system identification, state
estimation, and control. We find that, depending upon the performance required, TCLs
may not need to provide state information to the central controller in real time or at all. We
also estimate the size of the TCL potential resource; potential revenue from participation in
markets; and break-even costs associated with deploying DR-enabling technologies. We find
that current TCL energy storage capacity in California is 8~11 GWh, with refrigerators con-
tributing the most. Annual revenues from participation in regulation vary from $10 to $220
per TCL per year depending upon the type of TCL and climate zone, while load following
and arbitrage revenues are more modest at $2 to $35 per TCL per year. These results lead
to a number of policy recommendations that will make it easier to engage residential loads
in fast timescale DR.
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Chapter 1

Introduction

The traditional goal of an electric power system has been to control the supply-side
to fulfill demand; however, the demand-side can plan an active role in power systems via
Demand Response (DR), defined by the Department of Energy (DOE) as “a tariff or program
established to motivate changes in electric use by end-use customers in response to changes
in the price of electricity over time, or to give incentive payments designed to induce lower
electricity use at times of high market prices or when grid reliability is jeopardized” [29].
It is important to note that DR is not energy efficiency. Energy efficiency refers to actions
taken to permanently reduce the energy consumption of goods and services, for example
insulating a home, switching to more efficient appliances, and tuning a commercial heating,
air conditioning, and ventilation (HVAC) system. DR entails shifting electricity use, for
example, off peak, resulting in no net energy savings or shedding (i.e., curtailing) electricity
use temporarily, for example, during peak hours, resulting in net energy savings but only for
a small portion of the hours in a year.

DR programs can take a number of forms and provide a range of benefits to power systems
29, 9, 125, 2, 46]. Some examples are as follows:

e DR can reduce wholesale energy prices and their volatility. In systems without DR,
demand is inelastic. Additionally, when a power system nears its generation capacity,
supply becomes increasingly inelastic. The result is extreme wholesale electricity price
volatility on days when system demand is high [8, 78].

e DR can reduce the need for power system infrastructure expansion. Power systems
are sized so that they can provide electricity on the peak hour of the year. Through
DR, the peak is reduced and new investments in power plants and transmission can be
delayed.

e DR can limit the use of peaking power plants, i.e., peakers. Peakers are only used a
small number of hours per year, and have high marginal costs [51] and are generally
less efficient than other plants [39].
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e DR can improve grid reliability [100]. For example, DR can provide emergency response
to grid contingencies via ancillary services such as spinning reserve [42].

e DR can provide power system flexibility. Like generators and energy storage devices,
it can be viewed as a resource that can ‘provide energy’ (via demand reductions) or
provide services (via demand reductions and increases) to the grid.

e DR may be able to provide fast timescale energy balancing, especially important in
power systems with high penetrations of intermittent renewable resources like wind
and solar power [100, 19].

The goal of this work is to better understand the capabilities and constraints of DR
resources. Using tools from statistics, controls, and optimization, we present methods to
1) model commercial buildings and industrial facilities (C&I facilities) and compute DR
performance; 2) understand model error and quantify variability in responses to open-loop
DR signals; 3) aggregate and control residential thermostatically controlled loads (TCLs)—
such as air conditioners, heat pumps, electric water heaters, and refrigerators—to participate
in fast timescale DR; and 4) estimate the resource size, revenues, and costs associated with
TCL participation in fast timescale DR. The results of this work have implications for DR
program design and development, and energy policy.

In the following sections, we present a brief background on DR and detail different types
of DR. Then, we describe the organization of the rest of the dissertation. Detailed literature
reviews on each research topic are presented within each chapter.

1.1 Background on DR

A brief history of DR is given in [22]. In summary, DR is not a new concept, but has been
discussed since the deployment of the first electricity grids in the 1890s, especially with
respect to time-differentiated electricity rates. Other DR concepts such as interruptible load
management (ILM), mainly for industrial customers, and direct load control (DLC), mainly
for residential customers, became popular in the 1970s. Around the same time, international
energy crises lead to increased interest in demand side management and integrated resource
planning, in which DR can play a part.

In the 1990s, many electricity systems in the U.S. started the process of deregula-
tion/restructuring, moving from vertical integration to utility divestment in generation re-
sources and competitive wholesale electricity markets. However, as the 2000-2001 Califor-
nia Energy Crisis showed, a competitive wholesale electricity market with an unresponsive
demand-side can lead to problems of generator market power [8]. This spurred further inter-
est in DR, for example, in California the Lawrence Berkeley National Laboratory (LBNL)
Demand Response Research Center (DRRC) began research and pilot projects in 2004.

Many recent policies have aimed to eliminate barriers to DR including:
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e 2005 Energy Policy Act, which eliminated some barriers for DR entry in energy, ca-
pacity, and ancillary services markets [27]

e Federal Energy Regulatory Commission (FERC) Order #719, which permits aggrega-
tors to bid DR on behalf of electricity customers [48]

e FERC Order #745, which says that DR must be compensated at the Locational
Marginal Price (LMP) [49] (which is currently being challenged [80])

o FERC Order#755, which says that resources, including DR, must be paid for regulation
on the basis of how well they can provide the service [50], e.g., faster ramping resources
must be paid more

Increased investments in the ‘smart grid’ have lead to many new opportunities for DR.
In fact, five out of the ten meanings of the term ‘smart grid’ listed by Morgan et al. [97]
directly relate to DR: meters that can be read automatically, meters that can communicate
to customers, time of day and time of use meters, control of customer loads, and selective
load control. This new communications, sensing, and control infrastructure enables and
enhances notification of DR signals and changing electricity prices, and customer responses
to these signals/prices.

1.2 Types of DR

As the DOE DR definition explains, DR can take two main forms: time-differentiated elec-
tricity rates or incentive payments. Each of these forms has a large number of variants. In
this section, we summarize the many types of DR.

1.2.1 Time-differentiated electricity rates

Time differentiated electricity rates, also known as price based DR programs [2] and time
based DR programs, can be split into time of use (TOU) electricity rates and dynamic
electricity rates. TOU rates are known to customers well in advance (i.e., months ahead)
and encourage customers to shift electricity use to times when demand is usually low, for
example, nighttime. The hours in a days are divided into some number of categories, for
example, off-peak, part-peak, and peak, and electricity in each category is priced differently.
Additionally, prices may change in different seasons. This is in contrast with the ‘flat rates’
normally seen by residential customers, in which the price of electricity is fixed throughout
the day and year. In California, most large commercial and industrial customers have been
on TOU rates for decades.

Dynamic electricity rates are not known to customers well in advance. For example, they
may be published day ahead or day of, and high prices are used to signify high expected
system load (often resulting from high or low expected outdoor air temperature). Dynamic
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pricing can be further split into Critical Peak Pricing (CPP) and Real Time Pricing (RTP).
In CPP programs, DR events are called on a small fraction of the days in a year and on those
days electric rates are raised during peak hours to encourage both shifting and shedding. In
California, all large commercial and industrial customers (greater than 200 kW peak) are
defaulted to a CPP tariff, for example, Pacific Gas & Electric Company’s (PG&E) Peak Day
Pricing (PDP) tariff [106].

In RTP programs, electricity prices may change hour-to-hour and day-to-day Many
economists advocate RTP tied directly to wholesale prices [9, 8, 12]. However, prices could
also be a function of the value and cost of electricity in different time periods [29], which
implies that they could encapsulate information other than wholesale prices. For instance,
retail electricity prices could be higher during peak times (e.g., two times the wholesale price)
to encourage power use reductions. Currently, RTP rates are uncommon. For example, in
California only one utility offers an opt-in RTP tariff for large industrial customers, Southern
California Edison (SCE) [114]. SCE uses a look-up table to determine next-day prices based
on the next-day forecasted high temperature in downtown Los Angeles.

1.2.2 Incentive payements

As mentioned above, ILM and DLC programs have existed since the 1970s. In these pro-
grams, customers allow the program sponsor (e.g., utility, aggregator, etc.) to control their
loads within some prior agreed-upon constraints in exchange for credits and/or incentive
payments. Some work as been done to develop strategies to control large industrial plants
through ILM [61, 25] and residential TCLs through DLC [11, 99] for peak load management.

Another way to achieve DR is to allow loads to participate in wholesale electricity mar-
kets. In Demand Bidding Programs (DBP) and Capacity Bidding Programs (CBP), loads
or aggregations of loads offer demand reductions via price/quantity bids into energy and ca-
pacity markets. If their bids are accepted they must provide demand reductions at specified
times. In some cases, loads can also participate in ancillary services markets. For example,
in the Participating Load Pilot (PLP) program conducted by PG&E in 2009, C&I facili-
ties submitted offers via price/quantity bids into the day-ahead non-spinning reserve market
[71]. These bids were optimized by the California Independent System Operator (CAISO)
together with supply-side bids/offers. Though treating loads symmetrically with generators
in electricity markets is attractive, in practice, issues arise because demand bids are always
relative to a baseline and baseline models are inaccurate. These issues will be detailed in
Chapters 2 and 3.

1.2.3 Recent versus emerging DR

Most recent DR programs have focused on recruiting large C&I facilities rather than resi-
dential customers, which need to be aggregated together to achieve a measurable response.
Moreover, large customers generally have energy management and control systems (EMCS)
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Table 1.1: Recent vs. emerging DR.

Recent DR

Emerging DR

Type of customer

Program goal

Large commercial buildings and indus-
trial facilities

Peak load shedding, usually on the
hottest summer afternoons

Small commercial and residential build-
ings, and individual loads

Shedding and shifting any day, any time

Actuation Single DR signal: Continuous DR signal:
e manual or automated e automated
e centralized source e centralized/decentralized source
e open-loop control e feedback control

Timescale Day-ahead to hour-ahead Hour-ahead to real-time

which enable some level of DR automation. However, there are many advantages to engaging
residential customers in DR (detailed in Chapter 5) and so we are beginning to see more
work in this field. Table 1.1 details recent versus emerging DR programs. Emerging DR
programs have expanded program goals, beyond peak load shedding. Moreover, through
feedback control, emerging DR focuses on not only initiating a response, but also controlling
the response.

Another difference between recent and emerging DR is the timescale. In recent DR
programs, DR events are usually called day-ahead, e.g., via day-ahead prices (Figure 1.1).
Emerging DR programs have much shorter timescales. For example, when loads participate
in ancillary services markets they must respond to sub-hourly signals like 5-minute load
following signals or 4-second automatic generation control (i.e., regulation) signals. At faster
timescales, it is less practical to have ‘a human in the loop,” so emerging DR proposals involve
more automation and, possibly, DLC by the load manager. We present our DLC scheme in
Chapter 4.

1.3 Organization of the Dissertation

This dissertation consists of four main chapters. Chapter 2 and 3 focus on analyzing the
behavior of C&I facilities participating in recent DR programs, while Chapters 4 and 5 focus
on emerging DR paradigms.

In Chapter 2, we present methods for using 15-minute-interval electric load data, com-
monly available from C&I facilities, to help building managers understand building energy
consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally,
we present a regression-based model of whole building electric load, i.e., a baseline model,
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Figure 1.1: DR timescales.

which allows us to quantify DR performance. In Chapter 3, we use this baseline model
to understand the performance of 38 C&I facilities participating in an automated dynamic
pricing DR program in California. In this program, facilities are expected to exhibit the
same response each DR event. However, baseline model error makes it difficult to precisely
quantify changes in electricity consumption and understand if C&I facilities exhibit event-to-
event variability in their response to DR signals. Therefore, we present a method to compute
baseline model error and a metric to determine how much observed DR variability results
from baseline model error rather than real variability in response.

In Chapter 4, we investigate methods to coordinate aggregations of residential TCLs to
manage frequency and energy imbalances in power systems. We focus on opportunities to
centrally control loads with high accuracy but low requirements for sensing and communi-
cations infrastructure. Specifically, we compare cases when measured load state information
(e.g., power consumption and temperature) is available in real time; available, but not in real
time; and not available. We present a Markov Chain model of load aggregations, describe
how we applied Kalman filtering techniques for both state estimation and joint parameter
and state estimation, and present a look-ahead proportional controller. We compare the
results of our model-estimator-controller system to that of a simple proportional controller
to demonstrate the value of the approach. In Chapter 5, we estimate the size of the TCL
resource, potential revenue from participation in markets, and break-even costs associated
with deploying DR-enabling technologies.



Chapter 2

Commercial Building Load Shapes &
Baseline Models

This chapter presents methods for using 15-minute interval electric load data, commonly
available from C&I facilities, to help building managers understand building energy con-
sumption and ‘ask the right questions’ to discover opportunities for DR. Additionally, we
present a regression-based model of whole building electric load, i.e., a baseline model, which
allows us to quantify DR performance. We focus on recent DR programs. This chapter is
largely based on [92].!

2.1 Chapter Introduction

Building managers often look for opportunities for energy cost savings through energy effi-
ciency, electricity waste elimination (through anomoly detection, changing operational sched-
ules, etc.); peak load management; and participation in DR tariffs and programs, which in-
centivize reduced electricity consumption during peak hours or when grid reliability is jeop-
ardized. Analysis of 15-minute interval whole building electric load data is a good starting
point for discovering opportunities to reduce energy costs through building energy manage-
ment. These data are usually available to C&I customers. For example, PG&E collects
15-minute interval electric load data from all large C&I facilities (i.e., facilities with a maxi-
mum demand of more than 200 kW for three consecutive months) in its service territory. It
uses these data to compute both energy costs and demand charges. Despite their availability,
these data are not commonly used by building managers because the raw data are difficult
to process and interpret. Therefore, more effective methods are needed to translate electric
load data into actionable information.

1©2011 IEEE. With permission from my co-authors: Phillip Price, Sila Kiliccote, and Mary Ann Piette.
“Quantifying Changes in Building Electricity Use, With Application to Demand Response.” IEEE Transac-
tions on Smart Grid, Sept 2011.
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In this chapter, we present methods for analyzing 15-minute interval electric load data
from C&I facilities. Specifically, we describe graphical representations of electric load data,
a regression-based electricity load model, and the definition of various parameters that char-
acterize electric load as a function of time (i.e., the “load shape”) and DR behavior. The
technical contributions are as follows:

e We describe new ways of visualizing electric load data;
e we introduce a time-of-week indicator variable into regression models of electric load;

e we avoid the use of change-point models, but still capture a nonlinear relationship be-
tween outdoor air temperature and load, by dividing temperatures into many intervals
and then fitting a piecewise linear and continuous temperature dependence;

e we define new parameters to characterize electric load shapes and DR behavior;
e and we apply the modeling methods to evaluate DR effectiveness.

In Figure 2.1, we present a framework for using electric load data to assess opportunities
for DR, and evaluate the effectiveness of the DR strategies that were implemented. Tradition-
ally, building managers develop DR strategies after only minimal analysis of their load data.
They primarily work with their utility or aggregator to adapt DR strategies, such as those
in [98], that have worked well in other buildings. Therefore, they may miss building-specific
DR opportunities or may implement DR strategies that are ineffective in their buildings.
Building managers do not typically approach DR strategy development systematically, in
part because there are too few DR methods and tools [47].

Therefore, we propose that building managers use tools incorporating data analysis meth-
ods such as load shapes, standardized load parameters, parameter plots, and load prediction
to analyze their facilities’ current and historic load shape. These methods are described in
Sections 2.3 and 2.4. With knowledge resulting from this analysis and knowledge of DR
strategies that have worked well in other buildings, a building manager is able to develop
a list of informed questions that help direct an evaluation of building operations, controls,
systems, and end-uses. This process is explained in Section 2.5. The results of the evaluation
allow the building manager to identify potential DR strategies that are specific to his or her
building.

The effectiveness of DR strategies that have been executed is determined using load
prediction models to estimate what load would have been on a DR event day if a DR
event had not occurred (a literature review is presented in Section 2.4.1). There are few
tools available to building managers that automate load prediction. Also, additional data
analysis methods could enhance the interpretation of load prediction results. Therefore, we
propose that building managers use tools incorporating load prediction, DR residuals, and
DR parameters to evaluate DR effectiveness. These methods are detailed in Sections 2.4 and
2.6.
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Figure 2.1: Framework to assess and evaluate DR opportunities. (©2011 IEEE

As Figure 2.1 shows, developing DR strategies should be an iterative process: identify
a DR opportunity; implement and evaluate it; and, if desired, modify it to improve the
response or move on to the next opportunity. Improving a building’s DR strategies benefits
the building by reducing its energy costs. It also benefits the grid [60]. Of course, these
benefits must be weighed against DR costs [70].

A similar framework to that in Figure 2.1 could be applied to assess opportunities for
any form of building energy management, but we focus on DR because more DR estimation
tools and methods are needed [47], and the use of DR is expanding. In many utility service
territories, C&I facilities are called to shed or shift load on hot summer afternoons when the
electricity grid is stressed with high loads due to residential and commercial cooling.

In the future, facilities may be dispatched at any time, especially those participating in
wholesale energy, capacity, and ancillary service markets (such as spinning reserve [42], non-
spinning reserve [71], and regulation/load following [19]), and as DR is used to support the
integration of intermittent renewable energy resources [19, 124]. Therefore, new analytical
methods are needed to assess opportunities for and evaluate the effectiveness of “any day,
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Table 2.1: Facilities used in examples. (©)2011 IEEE

Facility Type Location Weather Peak Load Peak Load
Station(s) Load* Factor* Intensity*
(kW) (W/m?)
County Bldg Office Martinez Concord 543 0.33 44.6
Furniture Store  Retail East Palo Alio L0 A&y, 0.50 48.2
Hayward
Bakery Industrial Oakland Oakland 620 0.61 66.1

*Computed for May - Sept 2008, with 15-minute-interval data.

any time” DR.

2.2 Data Sources

2.2.1 Electric load data

We use 15-minute interval whole building electric load data from 38 large C&I facilities
(peak demand >200 kW for 3 consecutive months) in California that participated in PG&E’s
Automated CPP Program between 2006 and 2009. Table 2.1 shows the C&I facilities used
in examples throughout this chapter. Appendix A.1 gives detailed information on each of
the facilities. PG&E called CPP DR events on up to 12 summer business days (non-holiday,
weekdays) per year when system-wide load was expected to be high, which, in California,
usually occurs on hot summer days as a result of commercial and residential air conditioning.
On DR days, electricity prices were raised to three times the normal price from 12 to 3 pm
(moderate price period), and five times the normal price from 3 to 6 pm (high price period).
In exchange for participating in the program, facilities paid lower energy prices on non-DR
days. All 38 facilities used the OpenADR Communication Specification [107] to receive
DR event notifications, which were provided by 3 pm the business day before the event.
Each facility implemented a different set of pre-programmed DR strategies and executed
the same strategies from event-to-event. Strategies included changes to HVAC system, light
dimming/switching, and industrial process shedding/shifting [98].

2.2.2 Temperature data

From NOAA [101], we acquired hourly outdoor air temperature data for each facility from
the nearest weather station. Unfortunately, some of the temperature data are spotty. We
linearly interpolated the data to assign an approximate temperature to every 15-minute
interval, though when six or more hours of data are missing we do not interpolate. In some
cases, when the data for a station were particularly spotty, we have filled the holes with data
from another nearby station. Temperature data for the aggregate populations were generated
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by weighting and averaging data from the individual stations. Weights are determined by the
number of facilities in the aggregate population associated with each station. For example,
if N facilities are associated with Station 1, which measured temperatures T} (t), and Nj
facilities are associated with Station 2, which measured temperature T5(t), and so on, then
aggregate temperature, T,4,, at time step ¢ is computed as follows:

M
Tagg(t) = —Z,leNzill(t) , (2.1)
Zi:l Ni
where M is the total number of weather stations associated with facilities in the aggregate
population. Table 2.1 shows the weather station(s) from which data were acquired for each of
the facilities used in the examples. Detailed information about each of the weather stations
and a data interpolation summary are given in Appendix A.1.

2.3 Visualizing Electric Load Data

It is possible to learn a significant amount about the performance of a building over time,
and as compared to other buildings, by plotting electric load data in various ways [55,
54, 56]. Analyzing electric load data graphically can lead to more insights into building
characteristics, operations, and use than can be gained by only analyzing summary statistics.
In this section, we describe several ways of visualizing electric load data. We first plot time
series data and describe what can be learned from these plots. We then define and plot a
small set of parameters that are useful for describing load variation from one day to the next.
These “parameter plots” may help identify aspects of load shapes more easily.

2.3.1 Load shapes

Figure 2.2 shows electric load versus time for the three example facilities. Striking differences
between facilities are immediately apparent including differences in operating hours, daily
load shape regularity, the magnitude of daytime versus nighttime loads, and the variation in
load from one 15-minute-interval to the next (i.e., the smoothness of the load shape). In ad-
dition, day-to-day changes within facilities can be observed. For instance, all of the facilities
have higher loads in the second week shown, likely due to higher outdoor air temperatures
(and therefore more need for cooling) during the second week.

Many building load shapes share some features (Figure 2.3). Most buildings have a clear
base load, attained during the night, below which the power consumption rarely falls. In the
early morning, the HVAC system switches from nighttime to daytime operation, and, if the
building interior warmed/cooled overnight, the HVAC system may turn on at high power to
cool/warm the building. This results in a short-lived load spike called the morning start-
up. As the morning continues, load increases with increased occupancy and, in the cooling
season, with increased outdoor air temperature. At some point the building reaches its peak
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Figure 2.2: Electric load versus time. (©2011 IEEE

load for the day. Peak loads can be computed over any time interval (e.g., daily, seasonally,
yearly), and are generally more variable than base loads. In the afternoon or evening, the
HVAC system switches back to nighttime operation and the power consumption quickly
decreases, a phenomenon called the evening setback. In some buildings, some excess over the
base load persists into the evening leading to an evening shoulder.

Plotting time series load data and/or overlaying data from different time periods can be
useful for noticing and characterizing changes in load shapes and their features. However,
there are limitations to this approach:

1. For most facilities, energy consumption is a function of weather; however, we are gener-
ally interested in understanding changes in energy consumption that are not caused by
weather variation. To deal with this issue, we present a method for weather-normalizing
load data in Section 2.4.2.

2. Some phenomena may be difficult to recognize in plots of time series load data. For
instance, noticing a tendency for load to increase gradually over a long period might
be difficult, since this small trend will often be superimposed on seasonal variation and
other features. Overlaying data separated by a year may reveal that load is higher now
than a year ago, but will not reveal whether the change was gradual or abrupt.

3. Graphical approaches to understanding and comparing load shapes are useful only
when people are able to devote time and effort to using them. Automated methods
can potentially reduce this effort, though fully automating the analysis of time series
data such as those in Figure 2.2 is a daunting task.
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Figure 2.3: Load shape features and parameters. (©2011 [EEE

Table 2.2: Load shape parameter definitions. (©2011 IEEE
Load Shape Parameter Definition

Near-Base Load (kW) 2.5 percentile of daily load.

Near-Peak Load (kW) 97.5"" percentile of daily load.

High-Load Duration (hrs) Duration for which load is closer to near-peak than near-base load.

Rise Time (hrs) Duration for load to go from near-base load to start of high-load period.
Fall Time (hrs) Duration for load to go from end of high-load period to near-base load.

2.3.2 Load shape parameters

As with any time series, load data invite the calculation of a wide variety of summary
statistics. It is useful to distinguish between two kinds of summary statistics: those that
summarize various aspects of the load and its variability, and those that summarize the
amount of load or load variability that is not related to weather, i.e., weather-normalized
summary statistics. In this section, we consider summary statistics that are not weather-
normalized.

We recommend five parameters that are useful for describing load shapes (Figure 2.3 and
Table 2.2). The value of each of the parameters can be calculated for each day and these
values can be summarized (e.g., mean and standard deviation of each parameter).

We define the “near-base” and “near-peak” load since the base and peak load summarize



CHAPTER 2. COMMERCIAL BUILDING LOAD SHAPES & BASELINE MODELS 14

extreme events, which may differ qualitatively from events that are actually of interest. For
instance, the power consumption during a power outage should not be considered a building’s
base load. As for the peak load, consider two buildings with the same power consumption
profile that each have power usage spike for a full 15 minutes. The first building’s spike
occurs during a single 15-minute-interval, but the second building’s spike is spread across
two 15-minute-intervals. The measured peak load for the first building will be higher than
that of the second building despite that the fact that they both consumed the same amount
of power for the same amount of time. To help deal with these issues, we recommend using
the 2.5 and 97.5'" percentile of daily load instead of the minimum and maximum.

We define three time intervals, high-load duration, rise time, and fall time, to characterize
how the load changes throughout the day. In practice, it is difficult to find definitions of
these time intervals that yield consistent, easily interpretable results. The definitions in
Table 2.2 work well if the load shape is something like Figure 2.3, but it do not produce
useful numbers in some cases, such as for load shapes that do not vary substantially over
time or load shapes that have multiple extreme maxima and minima during each day.

2.3.3 Parameter plots

Plotting the parameters defined in Table 2.2 can help us to recognize phenomena that we
would be likely to miss if we only analyze plots of 15-minute-interval load data. For example,
in Figure 2.4, we plot each facility’s near-base and near-peak load for weekdays from May
to Sept 2008. Examining these plots reveals several things:

e the office building’s and furniture store’s near-base loads were relatively constant, while
the bakery’s near-base load varied day-to-day;

e the bakery’s near-peak load increased over the course of the summer; and

e the bakery’s near-peak load did not vary significantly day-to-day, unlike that of the
office building and furniture store.

While all of this information could be obtained from a plot of 15-minute-interval load data,
the many layers of information present in such a plot make it very difficult to identify these
trends.

Figure 2.5 shows an example of what one can learn from plotting a facility’s high-load
duration over time. Analyzing the plot we learn that, in early 2008, the furniture store’s
operating hours were extended by more than an hour each day, and became more uniform
day-to-day. On an initial inspection of the store’s 15-minute-interval load data we did not
notice this change (though in retrospect it is visible). In comparison, when we inspected
Figure 2.5, we immediately noticed the change and when it occurred. More examples of
useful parameter plots can be found in [108].
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Figure 2.4: Near-base (lower curve) and near-peak load (upper curve) for each weekday
from May to Sept 2008. Dotted and dashed lines show the 15, 50", and 85" percentiles of
the near-peak load. Significant dips in load for the office building and bakery are holidays
(Memorial Day, Independence Day, and Labor Day). ©2011 IEEE
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Figure 2.5: High-load duration for the furniture store for each weekday from Jan 2007 to
Oct 2008. (©2011 IEEE

2.4 Predicting Electric Loads

In this chapter, we focus exclusively on understanding past electric load. We use statis-
tical models that quantify the electric load as a function of time-of-week and outdoor air
temperature. Following standard statistical terminology, we call the output of the model
a “prediction” of the electric load, even if the events occurred in the past. Predictions of
future load are referred to as “forecasts.”

Electric load prediction is useful for comparing how a facility is currently performing to
how it has performed in the past. Specifically, load prediction is used to:

e understand changes in a facility’s electricity consumption patterns from one time period
to the next;

e quantify the effectiveness of DR strategies;
e quantify the effectiveness of energy efficiency retrofits; and

e perform anomoly detection (by finding times when the building is not behaving as it
has behaved in the past).

In each case, the predicted load is compared to the actual load. Importantly, the predicted
load is computed under the same key conditions as those that lead to the actual load. For
example, using actual weather data to compute the predicted load allows us to ‘weather-
normalize’ the prediction; the remaining differences between the predicted and actual load
are not weather-dependent.

Weather-normalization is especially important for facilities with significant temperature-
dependent loads (e.g., cooling loads, electric heating loads). For example, in Figure 2.6
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Figure 2.6: The importance of weather-normalization. The top plots compare actual and
predicted load for each year, the bottom left plot compares actual load data across years,
and the bottom right plot shows weather-normalized predictions. ‘2009 model / 2006 temps’
refers to a load prediction made using a baseline model created with 2009 load data and
2006 outdoor air temperature data, etc. (©2011 IEEE

we show the furniture store’s actual and predicted load for three days in July in 2006 and
2009. Predictions are computed using the load prediction method that will be introduced
in Section 2.4.2. To give a sense for model accuracy, the top plots compare actual and
predicted load for each year. The bottom left plot compares actual load data across years.
From this plot, we learn that the facility used significantly less energy in 2009 than 2006.
However, we would like to know how much of the difference is due to changes in equipment,
operations, and use, and how much is simply due to weather. The bottom right plot shows
weather-normalized predictions. Specifically, predictions from 2006 and 2009 are shown, as
well as predictions that use the 2009 model but 2006 temperatures. Comparing the gray and
thin black lines we can see the portion of the savings not due to weather, while comparing
the thin and thick black lines we can see the portion of savings due to weather. Some,
though not all, of the difference in daytime load is due to weather, while almost none of the
difference in nighttime load is due to weather.

We next present a brief review of existing load prediction methods. Then, we propose a
load prediction method that uses a time-of-week indicator variable and a piecewise linear and
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continuous outdoor air temperature dependence. In addition, we briefly discuss the sources
of error associated with load prediction.

2.4.1 Existing methods for load prediction

Electric utilities use simple methods to predict the electric loads of facilities that participate
in DR programs. The predictions are called baselines because they provide a baseline against
which demand reductions are computed. California electric utilities use methods such as
averaging the electric use profiles of the three days with the highest energy usage out of
the last ten business days, or averaging the electric use profiles of the last ten business days
(28, 52]. To adjust for weather and other conditions on DR days, predictions are sometimes
multiplied by a morning adjustment factor: if a building is using, say, 10% more electricity
on the morning of a DR day than on other mornings, then its predicted afternoon load is
increased by 10% as well. Unfortunately, this approach has a serious problem: if a facility
shifts some of its load to the morning on a DR day, the result of the morning adjustment is
an overestimate of the amount of energy the building would have consumed during the DR
period. Essentially the building is credited twice for the same energy shift: once by using
less energy than it would have if it did not participate in DR, and once by overestimating
the amount of energy that it would have used.

More advanced load prediction methods have been developed for a variety of applications
including estimating the effectiveness of energy efficiency retrofits and forecasting utility-
scale electric loads. Claridge [26] discusses many approaches for using historical electric
load data to model the electricity consumption of C&l facilities including linear regression
models, calibrated simulations, Fourier series models, and neural network models (e.g., [65]).
Granderson et al. [53] also describe several other methods for residential load prediction
including non-linear models such as locally-weighted regressions, “bin” models in which load
predictions are based on the average load for time periods that share the same bin as current
conditions (e.g., weather and time-of-day), and nearest-neighbor models in which the current
load is predicted to be the same as it was when previous conditions were closest to current
conditions. Taylor et al. [120] compare several methods for forecasting utility-scale electric
loads including exponential smoothing models, ARIMA models, neural network models (e.g.,
[104]), and regression with principal component analysis.

Here, we use linear regression models because — when constructed appropriately — they
provide a good fit to load data in most buildings, their results are easy to interpret, they are
easy to modify, and they present negligible computational burden. In addition, regression
methods have performed well when compared against other load prediction methods [77,
57, 110]. In 1986, Fels [45] introduced the PRInceton Scorekeeping Method, or PRISM, a
regression-based load prediction method to standardize the measurement of energy conserva-
tion savings. Heating degree-days and monthly electricity consumption are related through a
simple piecewise linear regression model. Other innovative regression-based load prediction
methods followed including methods using finer resolution (e.g., daily and hourly) electric



CHAPTER 2. COMMERCIAL BUILDING LOAD SHAPES & BASELINE MODELS 19

load data, change-point models [74], and multiple linear regressions [67, 66]. Kissock et al. [74]
developed regression models specifically for commercial buildings, while Kissock and Eger
[73] developed models for industrial buildings.

2.4.2 Load prediction method

We have developed a linear regression-based load prediction method that includes two novel
features: a time-of-week indicator variable, and a piecewise linear and continuous outdoor
air temperature dependence derived without the use of a change-point model or assumptions
about when structural changes occur. Both of these of these features will be discussed in
depth at the end of this section, after the load prediction method is introduced.

A facility’s electric load is usually a function of both temperature and time-of-week, as
shown in Figures 2.7 and 2.8.2 Therefore, we consider both temperature and time-of-week
in the regression model. Our method is as follows: we divide a week (Monday-Friday)
into 15-minute-intervals (indexed by i), e.g., the first interval is from midnight to 12:15 on
Monday morning, the second interval is from 12:15 to 12:30, and so on. A different regression
coefficient for each time-of-week, «;, allows each time-of-week to have a different predicted
load. Additionally, we expect demand to be a piecewise linear and continuous function of
outdoor air temperature, T, as described in [45, 74], for example, like that in Figure 2.9.
When the outdoor temperature is high, cooling load will increase with temperature, and
when the outdoor temperature is low, heating load will increase as temperature decreases
(even when electricity is not used as the heat source electricity will be required to run
pumps and fans when the building is heating). For some range of moderate temperatures,
the load may be insensitive to temperature because neither cooling nor heating is needed
(the temperature is said to be in the “dead-band”). Sometimes the outdoor air temperature
may be so high that the cooling capacity cannot achieve the desired indoor temperature set
point, at which point load is at the maximum possible AC load (maxed-out). Additional
change-points are also possible (e.g., in facilities with two chillers, the second of which only
turns on when the first is operating near capacity).

This nonlinear temperature effect can be modeled with a piecewise linear and continuous
temperature-dependent load model. For each facility, we divide the outdoor air temperatures
experienced by that facility into six equally-sized temperature intervals.® For example, if the
minimum temperature experienced by the facility were 50°F and the maximum temperature
experienced by the facility were 110°F, the temperature intervals would be 50-60°F, 60-70°F,

2Temperature and time-of-week are correlated: the highest temperatures generally occur in the afternoon
and the lowest temperatures generally occur at night. Therefore, both time-of-week and temperature effects
are superposed on each plot, and Figure 2.7 shows total load versus temperature, not temperature-dependent
load versus temperature.

3 Any number of intervals could be used, but we recommend using at least twice the expected number
of change-points, but not so many as to cause over-fitting problems. Through trial and error, six bins were
found to allow for enough change points and not cause over-fitting problems. This value is not optimized.
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Figure 2.7: Scatter plot of load versus temperature, including both occupied mode load
(black) and unoccupied mode load (gray). Data shown are from May-Sept 2008. (©2011
IEEE

Office Bldg

400

200

O L L L L L L L L L
0 48 96 144 192 240 288 336 384 432 480

Furn. Store

< 1000 i -
T 500f : 7 i
9 v
O Il Il Il Il Il Il Il Il Il
0 48 96 144 192 240 288 336 384 432 480

Bakery

600 y
400 et VI T
200
O Il Il
0 48 96 144 192 240 288 336 384 432 480
time—of-week (measured in 15 minute intervals)
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(black) and unoccupied mode load (gray). Data shown are from May-Sept 2008, so for each
time-of-week there are 21-22 data points. (©2011 IEEE



CHAPTER 2. COMMERCIAL BUILDING LOAD SHAPES & BASELINE MODELS 21

A maxed-out

dead-band /

I\

cooling

heating

X

Outside Air Temperature

Temp Dep Load

v

Figure 2.9: Temperature-dependent load. (©)2011 IEEE

Table 2.3: Example of component temperature computation, for By = 10, By = 20, ...B; = 50
(in arbitrary temperature units). (©2011 IEEE

T Tc,l Tc,2 Tc,S Tc,4 Tc,5 Tc.,6
2 2 0 0 0 0 0

18 | 10 8 0 0 0
32| 10 10 10 2 0
47 | 10 10 10 10 7
58 | 10 10 10 10 10

o O oo

70-80°F, 80-90°F, 90-100°F, and 100-110°F. A temperature parameter, 3; with j = 1...6,
is assigned to each outdoor air temperature interval.

To achieve piecewise linearity and continuity, the outside air temperature at time ¢
(which occurs in time-of-week interval i), T'(¢;), is broken into six component temperatures,
T.;(t;) with j = 1...6. Each T ;(¢;) is multiplied by §; and then summed to determine the
temperature-dependent load. Let By (k = 1...5) be the bounds of the temperature intervals.
Component temperatures are computed using the following algorithm:

1. Let By for k = 1...5 be the interior bounds of the temperature intervals.

2. T > By, then T.; = B;. Otherwise, T,.; =T and T ,,, = 0 for m=2...6 and algorithm
is ended.

3. Forn =2.4,if T > B,, then T.,, = B, — B,_y. Otherwise, 1., =T — B,_; and
Tem =0 for m = (n+ 1)...6 and algorithm is ended.

4. If T > B5, then TC,5 = By — B, and TC,G =T — Bs.

An example computation is shown in Table 2.3.
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The temperature parameters [3; are only used when a facility is operating in occupied
mode since one would expect a facility’s response to temperature would change at night.
The start and end of the occupied mode are manually determined by looking at average load
profiles on non-DR days. In Figures 2.7 and 2.8, data from occupied mode and unoccupied
mode are differentiated (the bakery is never in unoccupied mode on weekdays). Analyzing
Figure 2.7, it is clear that the office building and the furniture store exhibit different behavior
in different modes. For all facilities, occupied load, L,, is estimated as follows:

A

Lo(t;, T(t;)) = ci + Z BT, ;(t:). (2.2)

To predict load when the building is in unoccupied mode, we use a single temperature
parameter, [, since we expect most facilities in the data set to be operating at or near the
dead-band at night.* Unoccupied load, L, is estimated as follows:

~

Ly(ti, T(t:) = ai + BT (t:). (2.3)

The parameters «; for ¢« = 1...480, §; for j = 1...6 and 3, are estimated using non-DR
day load and temperature data with ordinary least squares. Each of the 487 parameters is
physically meaningful: power use varies in each 15-minute interval in a week and varies as
a function of outdoor air temperature. We use 15-minute interval data from May through
September, so approximately 20 data points are available to estimate each «;; hundreds or
thousands to estimate each 3;; and thousands to estimate 3,. Applying the model to data
from a much shorter interval, such as four or six weeks, would likely run into problems from
“over-fitting,” with parameter values being overly influenced by stochastic variability in the
data.

We implemented the load prediction algorithm in MATLAB. Details on the implemen-
tation are given in Appendix A.2.

To test how well the load prediction method works we plot predictions on top of actual
load data in Figure 2.10. We also include scatter plots in Figure 2.11. As can be seen in
both figures, the prediction method works well for the office building and furniture store,
but does not work as well for the bakery. The accuracy of the prediction is a function of
how well the explanatory variables (time-of-week and outdoor air temperature) capture the
power consumption of the facility. In the case of the bakery, we would expect that power
consumption would be a function of the timing of industrial production processes, which is
not captured in the model.

For the same facilities, we plot actual and predicted temperature-dependent load in both
occupied and unoccupied model in Figure 2.12. The bakery’s electric load is less correlated
with temperature than the office building’s or furniture store’s electric loads.

4In climates where facilities transition between heating, dead-band, and cooling at night, it is advisable
to use more temperature parameters to more accurately capture the load of the facility in unoccupied mode.
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Figure 2.10: Actual versus predicted load time series for Monday-Friday, June 2-6, 2008.
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Figure 2.11: Actual versus predicted load scatter plots. Data shown are from May-Sept
2008. Significant outliers visible in the plot for the office building result from the model’s
inability to accurately predict the morning start-up. (©2011 IEEE
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This load prediction method differs from existing methods in two ways. First, we use a
time-of-week indicator variable, ;. Most methods we have seen compute separate regres-
sions for each time-of-day (e.g., [1] and Model 5 in [28]), but do not capture day-to-day
load variation. Adding a weekday/weekend indicator variable [105] or day-of-week indicator
variable [110] helps with this problem but effectively only shifts the daily load shape up or
down as a function of the day-of-week; it does not allow for other day-to-day changes in
the load shape, such as shorter operating hours on certain days of the week, or days of the
week with consistently higher peaks. A time-of-week indicator variable solves this problem,
improving model accuracy.

Second, this method is different because we avoid the use of change-point models. In
much of the energy efficiency literature, change-point models are used to determine the
outdoor air temperatures at which the building transitions from heating to the dead-band
and from the dead-band to cooling (e.g., [74]). Our piecewise-linear modeling approach avoids
the complexities of change-point models (such as the need for iterative regression) with no
significant drawbacks. We divide the range of outdoor air temperatures experienced by the
facility into six temperature intervals and allow the slope of the load versus temperature
profile to be computed separately in each temperature interval, with the constraint that
the predicted load must vary continuously as a function of temperature. We are able to do
this because we are using high resolution load data (15-minute interval) and therefore have
sufficient data to determine the linear temperature dependence in each temperature interval.

We explored several variations on the load prediction method, including adding param-
eters associated with other weather data, such as humidity, to the model. However, since
all of the facilities analyzed in this study are located in low-humidity climates, we did not
include humidity in the final model. We also experimented with different numbers of temper-
ature intervals, and allowing the temperature coefficients to vary with time interval. Most
of these changes did not substantially improve the model fit. Surprisingly to us, even adding
predictive variables such as the overnight outdoor temperature (which we expected to help
predict the load during the morning start-up) did not improve the fit very much in most
cases. In the end, we settled on the model discussed above. Others are possible and may be
better for some buildings or some situations.

2.4.3 Load prediction error

Reddy et al. [111] enumerate the many sources of error associated with using regression
analysis to model building electric load. Our regression model residuals are autocorrelated
and heteroscedastic and the regression parameters, o and 3, are correlated. Therefore, it
is very difficult to compute robust confidence intervals on the regression parameters (sim-
ply reporting the standard error associated with each regression parameter estimate, as in
[45], underestimates the level of uncertainty). However, uncertainty on load predictions (as
opposed to the regression parameters) can be approximated with the standard error, which
can be computed at each interval, 7. Computing robust confidence intervals on predictions
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made on days that were not used to build the regression models (e.g., DR days) is more
complicated and will be discussed in the next chapter.

2.5 Identifying DR Opportunities

In Table 2.4, we show how the methods presented in Sections 2.3 and 2.4 can help building
managers generate a list of informed questions that will help them identify opportunities for
DR. Specifically, we list five data analysis methods and explain each method’s relevance to
DR. We also describe what the building manager should look for when examining a plot or
evaluating a parameter. Lastly, we list some example questions that may be generated by
applying each method. While the example questions in Table 2.4 are fairly general, a building
manager could generate much more specific questions after data analysis. For example, in
examining Figure 2.4, one might ask: Why did the bakery’s near-peak load increase during
the summer, and could the additional load be curtailed during DR events or shifted outside
of the DR period?

To answer these questions, the building manager will need to use the results of the data
analysis to guide an evaluation of the facility’s operations, controls, systems, and end uses
(Figure 2.1). For example, to figure out why the bakery’s near-peak load increased during
the summer the building manager will first need to determine when the daily near-peak load
occurs. Then, he or she can determine which loads run during those hours, how much power
those loads consume, and how that has changed during the summer. With this knowledge,
the building manager can determine if the additional load is curtailable or shiftable, or if it
is essential to critical building operation.

The benefit of applying these methods is that the building manager is able to focus
his or her evaluation on issues relating to DR (though the same methods could be used to
generate questions related to energy efficiency, electricity waste elimination, or peak load
management). The answers to the questions not only help building managers develop DR
strategies but also help them pair their facilities with the right DR programs, since all DR
programs have different requirements (e.g., minimum shed required, length of time to hold
shed, predictability of shed, allowable times-of-day or days-of-week of DR events, frequency
of DR events).



Table 2.4: Partial list of methods for helping to identify DR opportunities. (©)2011 IEEE

Method

Relevance to DR

What to Look For?

Example Questions

Plot of daily load
shape

Changes in electric load from
hour-to-hour affect how much
load a facility is able to shed.

How does load vary throughout
the day?

Which equipment runs during each
hour of the day? Which could be shed,
shifted, or limited during a DR event?

Plot of near-peak
and near-base load
over time

Changes in electric load from
day-to-day affect how much load
a facility is able to shed.

How does load vary day-to-day?

Which equipment runs on the days with
the highest loads? Which could be
shed, shifted, or limited during a DR
event?

Plot of high-load
duration over time

Facilities can shed more load
during hours when they are con-
suming more.

How long is the high-load dura-
tion, and how variable is it day-
to-day and seasonally?

Which building systems/operations af-
fect high-load duration and its variabil-
ity?

Mean and standard
deviation of the
rise/fall time

Some facilities might have a hard
time participating in DR while
they are powering up/down.*

How long are the rise time and
fall time, and how variable are
they day-to-day?

Which building systems/operations af-
fect rise/fall time and its variability?

Using load predic-
tion to compare
weather-normalized
load shapes from
two or more time
periods

Variability in estimated DR
sheds is a function of unmodeled
load variability (discussed in Sec-
tion 2.6).

How variable is the electric load
over time (with weather held
constant)?

Which loads are variable? Are the vari-
able loads controllable (i.e., could they
be shifted outside of DR periods)? Is
load/shed predictability a requirement
for the DR program?

*This is particularly relevant for facilities participating in DR to support the integration of intermittent renewable energy resources,
such as wind and solar. These resources ramp in the morning and evening so facilities may be dispatched as they are powering up/down.
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2.6 Evaluating DR Effectiveness

In this section, we explain how the load prediction method described in Section 2.4.2 can be
used to quantify the effectiveness of DR strategies. In addition, we define the ‘DR Residual’
and a small set of parameters useful for characterizing the DR Residual.

To estimate the effectiveness of a facility’s DR strategies, we considered adding param-
eters to the regression model to estimate the load shed during a DR event; however, this
method would not allow us to understand shed-to-shed variability. Therefore, to analyze the
effectiveness of a facility’s DR strategies, we employ a ‘predict and subtract’ method:

1. Use the load prediction method described in Section 2.4.2 to develop a baseline model
of electric load for the facility. Use only data from non-DR days to make the baseline
model.

2. Acquire outdoor air temperature data from the DR day. Use the baseline model and
the DR day temperatures to predict what load would have been on the DR day if the
DR event had not been called.

3. For each time interval in the day, subtract the baseline prediction from the actual
electric load on the DR day. We call the resulting vector the DR Residual. For facilities
participating in ancillary services markets, the DR residual is called pseudo-generation
[71].

We applied this method to data from each of the facilities in Table 2.1. Since all DR
events were called on non-holiday weekdays in May - Sept 2008, each baseline model was
constructed only with load data from non-holiday weekdays during the same period. Though
all of these facilities participated in a traditional DR program (DR events were only called
hot summer afternoons), the same methodology could be used to evaluate “any day, any
time” DR.

In Figure 2.13, for each facility, we show the actual and baseline-predicted load for three
DR days. In each case, the difference between the actual load and the baseline-predicted
load is due to the facility’s DR strategies and other DR event-related behavior change, and
unmodeled load variability (i.e., explanatory variables in the model do not explain all of
the components of the total load, resulting in model error as shown in Figures 2.10 and
2.11). Despite automation of DR strategies (described in Section 2.2.1), for each facility,
there is variability in estimated DR sheds. Shed variability results from unmodeled load
variability, and, possibly, factors such as occupant behavior change on DR days; changes in
building operations, controls, equipment, and end-uses from event-to-event; and changes in
shed capacity as a function of outdoor air temperature, occupancy, total facility load, and
other variables. To fully understand shed-to-shed variability, we need to compute prediction
error on DR days, which is a subject of current research.

Because of load/shed variability from one DR event to the next it is instructive to look
at plots of averages. In Figure 2.14, for each facility, we plot the average baseline-predicted
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Figure 2.13: Actual and predicted load on three DR days (rows) for three facilities (columns).
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Figure 2.14: Average actual load, predicted load, and DR residual. Vertical lines show the
moderate and high price periods. (©2011 IEEE

load, actual load, and DR residual for all eleven DR events days in 2008. The average DR
residuals tell us many things including;:

e the office building and furniture shed load during both the moderate and high price
periods, while the bakery only sheds load during the high price period;

e the baseline model is unable to capture the office building’s morning start-up; and
e the furniture store’s load rebounds after the DR event.

A small set of parameters can be used to characterize DR residuals (Table 2.5 and Fig-
ure 2.15). The list is based on that developed by Mathieu et al. [91]. Average demand shed is
important because it tells us, on average, how much load is shed during the DR event. Intra-
shed variability is a way for us to capture some of the dynamics of the shed. If intra-shed
variability is small relative to the average demand shed, the shed was held steady during the
DR event, while, if it is large, the shed bounced around, increased, or decreased during the
DR event. Residual ramp time tells us how quickly the facility sheds load, and rebound tells
us how the facility behaves after the DR event. Daily peak demand and daily energy tell us
how the DR event affects the facility’s daily power and energy use.

These parameters can be computed for a certain DR event or an average DR event. In
Table 2.6, for each facility, we give values for each parameter for each DR day shown in
Figure 2.13 and for the average DR day shown in Figure 2.14. There is error associated with
each parameter value, and the values for the means are more certain than the values for
the individual events. For each facility, intra-shed variability is relatively high as compared
to average demand shed. Certain DR strategies, such as changing HVAC set points, often
lead to more intra-shed variability than strategies such as switching off lights or industrial
processes. Both the county building and the furniture store can shed load within 15 minutes
of the start of the DR period, while it takes the bakery 15-30 minutes. While all of the
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Table 2.5: DR residual parameters and definitions. (©2011 IEEE

DR Residual Parameter

Definition

Average demand shed (kW)
Intra-shed variability (kW)
Residual ramp time (min)
Rebound (kW)

Daily peak demand (%)

Baseline minus actual average load during DR event.

Standard deviation of demand shed during DR event.

Duration for load to drop to average 